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Analysis of the bifurcation diagram of a hybrid bistable system with feedback controls of chaos
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Based on the dynamic equation of a hybrid bistable system with a delayed feedback, we have studied
changes of the bifurcation diagram of its output oscillation under chaos suppression and delayed feedback
control of chaos, respectively, and the physical origin of these changes. The result clearly shows that, in this
case, the input intensity of the system is replaced by a smaller effective input intensity. So the bifurcation
diagram is shifted to its right side, and a certain part of the chaotic oscillation becomes periodic oscillation.
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I. INTRODUCTION (1)

m(;—:+V(t)=lf(t)+F(t), 2
The chaos suppressi@€S), F(t)=X[ —V(t)], proposed

by Davis [1], and the delayed feedback control of chaos

. is the weight of the chaos suppression or the chaos control,
The latter one has been successfully applied to many systergs;

; . is the effective delay time of chaos control and also scaled
[3-10]. Using these two methods, we have realized the feedt y

) . . fo the natural response time of the systefft)=0.5(1
back control of chaos theoretically and experimentally in an_ cogV(t— )+ 6)], while K is the extinction coefficient of

electro-optical bistable system with a delayed feedback, an e electro-optical bistable system afds the initial phase
successfully demonstrated the dynamic storage function g f the systenf11]

the systen11]. In the meantime, we have found that, fol- First, let us study the change of the bifurcation diagram

lowing these feedback controls, the whole bifurcation dia-under a CS. Setting the control tefft) to be X[ —V(1)]
gra}rﬁtﬁiss rs:sgrt\?vgswrill?ztissclg; the changes of the bifurca-the weightX to be ~0.2, 0.0, 0.2, respectively, and the delay
tion diagram under CS and DFC, respectively, and explortIme 7 Of the system to be 20.0, we solve BQ) with

the physical nature of the process from the viewpaint of bi_??unge-Kutta method and get three corresponding bifurcation

. . ) . . liagrams of the output oscillation leve|, with a long delay
furcation diagram analysis and give a theoretical understanagf the system, as shown in Fig. 1. Figur@lis the bifurca-

'Sn%tf:% tyvﬁhfzegzgcigc;gggfag& chaos in a hybrid bIStabIetion diagram in the absence of chaos suppression. Comparing
y y ) Fig. 1(b), which corresponds t8= —0.2, with Fig. Xa), we

find that the whole bifurcation diagram is shifted and com-

Il. THE CHANGES OF THE BIEURCATION DIAGRAM pressed to the left side. In this case, part of the periodic

UNDER THE FEEDBACK CONTROLS OF CHAOS oscillation region in Fig. @@ now lies in the chaotic oscil-

The dynamic behavior of a hybrid bistable system with a

5.4
delayed feedback can be described by the following dimen- I
sionless equatiofil1,12: Vi i
36
dVv(t) B
T"‘V(t)—lf(V(t—’T)), (1) 18
wherel andV(t) represent the input and output intensities, 0

respectively.r is the effective delay time in the feedback ! 25 4 N B
loop. Both 7 and the gffectlve time variableare scaled to FIG. 1. The output oscillation leveV, as a function of input
the natural response time of the system. intensity 1. The parameters:K=0.8,0=m, 7=20.0, F(t)=
Applying CS or DFC to the above system, then perform—X[_V(t)]; (8 X=0.0, without any chaos suppressidit) X=
ing numerical simulation for an electro-optical bistable SYS-—0.2, with a CS{c) X=0.2, with a CS. The pointa, B, andC in
tem with a delay, we get the following dynamic equation 1(p) indicate the first, the second, and the third bifurcation points,
with the chaos suppression or the chaos control: respectively. The bifurcation ordens=0, 1, and 2 in 1b) indicate
the bifurcation regions before the bifurcation poktbetween the
bifurcation pointsA and B, and between the bifurcation poinBs
*Electronic address: gol@mail.jlu.edu.cn andC, respectively.
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FIG. 2. The output oscillation leveV, as a function of
input intensity I. The parameter&=0.8, 6=, 7=20.0, F(t)
=X[V(t—27)—V(1)]; (@ X=0.0, without any chaos contralb)
X=-0.2, with a DFC;(c) X=0.2, with a DFC.

FIG. 3. The output oscillation leveV, as a function of
input intensity I. The parameterd=0.8,0=m, 7=20.0, F(t)
=X[V(t—7)—V(t)]; (@ X=0.0, without any chaos controlp)
X=0.2, with a DFC.

lation region in Fig. 1b). By comparing Fig. (c), which lll. THE PHYSICAL ORIGIN OF THE CHANGES
corresponds t&X=0.2, with Fig. 1a), we find that the whole OF THE BIFURCATION DIAGRAM

bifurcation diagram is shifted and lengthened to the right |~ 1.0 «0 find out the physical origin leading to
side. In this case, part of the chaotic oscillation in Figg) 1 the change of the bifurcation diagram, we substitGi(e)
bepomes the periodic oscillation in Fig(cL So some cha- =X[-V(t)] and F(t)=X[V(t—T)—V(t’)] into Eq. (2),
otic states of the system can be suppressed by the OS of yhen optain the following differential equations for CS and

=0.2. DFC, respectively:
Then, let us move to the case of DFC. Setting the control
term Ht) to be X[V(t—T)—V(t)], the weightX to be 1 dv() .
—0.2, 0.0, 0.2, respectively, the delay timeof the system 1+X dt V(O =171, ©)
to be 20.0, and the delay tinTeof chaos control to be 2 as
in the case of CS, we draw three corresponding bifurcation 1 dv(t)

X
diagrams with a long delay of the system, as shown in Fig. 2. 1+X dt +V(H)= 1+xv(t_T)+|* f(v), )

The comparison of Fig. (B), which corresponds tX=

—0.2, and Fig. 3), which is the bifurcation diagram with- wherel* =1/(1+X) is a new parameter and defined as an
out any chaos control, shows that the steady state region &ffective input intensity of the system.

orderm=0 (see Fig. 1and the periodic oscillation region of ~Eduations(3) and(4) clearly show that the input intensity
orderm=1 in Fig. 2b) happen to coincide exactly with the ! In the dominant ternif(t) of Eq. (2) is replaced by an
corresponding parts in Fig(&, and the bifurcation diagram effective input |ntenS|ty*' becayse qf the feedback controls
is compressed to the left side. Instead of controlling chaozgf chaos, so the whole bifurcation diagram of the system can
such a feedback control enlarges the chaotic oscillation r 0e changed.

- . . : When the delay timer of the system is long, the linear
gion of the system. But the comparison of Figc)2 which . . . :
corresponds tX=0.2, and Fig. &) shows that the steady stability analysis shows that the odd harmonics of the eigen

. - I ) fundamental f f th t inci ith th -
state region oimn=0 and the periodic oscillation region of undamental frequency of the system coincide wi e cor

DA g . responding higher eigenfrequencies of the system and are
m=1 in Fig. 2&) happen to coincide exactly with the corre- v strong while the even harmonics of the eigen fundamen-

sponding parts in Fig. (), and the bifurcation diagram is (5| frequency are far from the corresponding higher eigen

lengthened to the right side. Such a feedback control Ofrequencies and are very wefl3]. So the output oscillation

chaos enlarges the periodic oscillation region of the systemg of square wave form and there dd/(t)/dt~0 [11], and

so some chaotic states of the system can be controlled by thgy. (3) can be approximated to the following iterative Equa-

DFC of X=0.2 andT=27. tion:
In another case of DFC, setting the control tefft) to

be X[V(t—T)—V(t)], the weightX to be 0.0 and 0.2, re-

spectively, the delay time of the system to be 20.0, the

delay timeT of chaos control to ber instead of 2, and

following the above process, we draw two corresponding It is obvious that, with a negative CS &=0.2, the ef-

bifurcation diagrams with a long delay of the system, asfective input intensity is (# X) times less than the actual

shown in Fig. 3. By comparing Fig.(8), which corresponds input intensity. Therefore each point on the bifurcation dia-

to X=0.2, with Fig. 3a), which is the bifurcation diagram in gram in Fig. 1a) is shifted from I to (& X)I, and the bifur-

the absence of chaos control, we find that the whole bifurcaeation diagram is lengthened to the right sidet-(4) times

tion diagram is shifted and lengthened to the right side. Iras long as that of before chaos suppression. When a positive

this case, part of the chaotic oscillation in Figa8becomes CS ofX=—0.2 is applied to the system, the result is right on

the periodic oscillation in Fig.(®), so some chaotic states of the contrary, as shown in Fig(d).

the system can also be controlled by the DFCXef0.2 and When the delay timer of the system is long, numerical

T=r1. simulation shows that the result calculated according to the

|
V(D)= f(O=1"1(1). (5)
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FIG. 4. The input intensity, corresponding to the first bifurca-
tion point A as a function of the weighX of CS. The parameters:
K=0.8,0=m, F(t)=X[—V(t)]. The curves composed of open

circles are calculated from E¢3) when the delay time of the sys-
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FIG. 5. The output oscillation leveV, as a function of input
intensity . The parametersK=0.8, 6=, 7=20.0; (a) F(t)
=X[V(t—27)], X=0.2, with a DFC;(b) F(t)=X[—V(t)], X

tem is 7 (i=1—4), respectively. The solid lines represent the =0.2, with a CS;(c) F(t)=X[V(t—27)—V(t)], X=0.2, with a

curves ofl 5;=14;(1+ X)(i=1—4) corresponding to the case of a
long delay, wherely; (i=1—4) are the input intensities corre-

sponding to the first bifurcation point A, which are calculated from

Eqg. (3) when the weightX equals zero and the delay time of
the system isr, (i=1—4), respectively.(1) 7,=3.0,1¢;=3.20;
(2) T2:4.0,|02:2.96; (3) 7'3:6.0,|03:2.74; (4) 7'4:10.0,|04
=2.58.

differential equation(3) is the same as that calculated from
the iterative equatiols). When the delay time of the sys-
tem is short, the result calculated according to Bj.quali-
tatively agrees with that calculated from E§), as we can
see more clearly below.

With a negative CS and a short delaypf the system, the
shift behavior of the first bifurcation point Asee Fig. 1,
which is calculated from Ed3), is shown in Fig. 4the open
circles. With a negative CS and a long delayof the sys-
tem, the regular patterhy,=1,(1+X) of the shift of the
same bifurcation point A, which is calculated from E§), is

DFC.

When the delay timél of chaos control is equal to the
period 2r of the output oscillation in the bifurcation region
of m=1, which is a typical choice for chaos control, and the
weight X of chaos control is equal to 0.2, for the bifurcation
region before the second bifurcation point in Fige)2before
and after the DFC, there is alwaygt-27)=V(t), namely
F(t)=X[V(t—27)—V(t)]=0. Therefore Eq(6) becomes
V(t)=If(t) within these regions, and the bifurcation regions
of m=0 and 1 before the chaos control are not changed after
the chaos control, as shown in the comparison of Fig®. 2
and Zc). But for the region after the second bifurcation point
in Fig. 2(a), before the chaos control,(t—27) is no longer
equal toV(t). Here the change of the bifurcation diagram
is governed by the joint effect of the control terms
X[V(t—27)] and X[ —V(t)]. When only X[V(t—27)] is
applied to the system, the bifurcation diagram is shifted and

also shown in Fig. 4the solid lines. Figure 4 shows that the stretched to the left side, as shown in the comparison of Figs.
larger the weighX of chaos suppression, the greater the shift](a) and Fa). But when onlyX[—V(t)] is applied to the

of the first bufurcation point A. For the same weightFig.

system, the bifurcation diagram is shifted and lengthened to

4 shows three features. First, the shift of the open circle linghe right side, as shown in the comparison of Figs) &nd
for a short delay is smaller than the corresponding shift o(b), namely as shown in the comparison of Fig&)land
the solid line for a long delay. Second, the difference be-1(c). WhenX[V(t—27)—V(t)] is applied to the system, it is
tween the open circle line and the solid line for a shorterkey that, under the feedback controlXff— V(t)], the actual
delay is larger than the difference for a longer delay. Thirdinput intensity | in the dominant terrhf (t) of Eq. (2) is

with the increase of the delay time the difference quickly
diminishes, and becomes very small when the delay time
increases to 10.Ccurve 4.

replaced by a smaller effective input intensity =
I/(1+X). In other words, here the effect of the control term
X[—=V(t)] is stronger than the effect of the control term

a short delayr, the shift behavior of other points on the

point in Fig. 2a) is lengthened to the right side under the

bifurcation diagram is the same as that of the first bifurcatiorprc of X[ V(t—27) — V(1) ], as shown in the comparison of

point A.

Figs. 1a) and Hc), namely as shown in the comparison of

Now, let us discuss the case of DFC. When the delay timgjgs. 2a) and Zc). When the DFC oiX= —0.2 is applied to

7 of the system is long, there is dV(t)AD. So Eq.(4) can
be approximated to the following iterative equation:

X *
mV(t—T)+| f(t).
(6)

X |
V(t)= mV(t—T)‘f‘ mf(t)z

the system and T is equal tor2the result may be deduced
by analogy, as shown in the comparison of Fig&) 2and
2(b).

Numerical simulation shows that, when the weighbf
chaos control is equal to 0.2, and the delay timef chaos
control is set to be 4, for the bifurcation region before the
third bifurcation point in Fig. 2a), before and after the DFC,

The output oscillation for a long delay of the system is athere is alway3/(t—47)=V(t). Therefore Eq(6) becomes
typical square wave. So the period of the output oscillation i8/(t) =1f (t) within these regions, the bifurcation regions of

27 in the bifurcation region om=1, and 4 in the bifurca-
tion region ofm=2 [14].

m=0, 1, and 2 before the chaos control are not changed after
the chaos control, and the region after the third bifurcation
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point in Fig. 2a) is lengthened to the right side because offrom | almost to (- 2X)I, and the bifurcation diagram is
the joint effect discussed above. also lengthened to the right side correspondingly, but the
If the delay timer of the system is short, the eigen fun- lengthened multiple is less than {2X) because of the ef-
damental period of the output oscillation will not be equal tofect of the termCoX/(1+2X).
a multiple of 7, for example 2 or 47. But if only the delay In conclusion, when a CS or a DFC is applied to a hybrid
time T of the chaos control is set to be the eigen fundamentahistaple system with a long delay, the input intensity can be
period of the o_utput oscil_lation of the system, we will also replaced by a new effective input intensity. When the effec-
get the result similar to Fig. 2. , tive input intensity is smaller than the actual input intensity,
_ When the delay timer of the system is long, the delay he pifurcation diagram of the system is shifted to its right
time T of chao_s control is equal to, and the weighi OT ide, and part of the chaotic states of the system can become
chaos_ control is equal to 0.2, for the steady statg region Qzeriodic states. As the delay time of the system becomes
\T&E T';]:F\'?('t):{a)_’rﬁgg;gr:n% aftg tgzc%;%st\r}?{)ej fazltv)vays short, numerical simulation shows that the regularity of the
within this regilon and the stegay state regiomsf 0 before change of the bifurcation diagram under the feedback con-
P . . . Ifrols of chaos gradually deviates from that with a long delay
the chaos control coincides with the corrgspondmg region Oof the system, and the shorter the delay time, the larger the
m;cl) %ﬁ(la:rigt-hg;;h%%?oﬁgnttggl.Cﬁg(rjsthsortﬂfrg:/(:(?tlo:) riig:%n Ofdifference. Numerical simulation also shows that, with a
' ' short delay of the system, the result under DFC is more

longer equal to/(t). SettingCy=V(t—7) +V(t), where the ) : o
parameteiC, is a constant foor a fixed input intensityand complicated than that under CS in general. This is because

monotonically becomes larger along with the increase ofPFC IS @ joint effect of two control termx[V(t—T)] and

the input intensity in the bifurcation region of=t in Fig. X[ —V(t)], while CS is an effect of one control term
3(a), then substitutingV(t—T)=V(t—7)=C,—V(t) into X[ —V(t)] only. What one should notice is that the results in
Eq. (6), we get V(t)=[CoX/(1+2X)]+[1/(1+2X)]f(t) this paper are just from a hybrid bistable system with a de-
=[CoX/(1+2X)]+1*f(t). In this case, the effective input layed feedback, and it needs to be investigated further
intensity of the system is (£2X) times less than the actual Whether these results may be applied to other systems, espe-
input intensity. The comparison between Figé)and 3a)  cially the systems with a markedly different nature from the
shows that the first bifurcation point in Fig(e8 is shifted present one.
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