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Analysis of the bifurcation diagram of a hybrid bistable system with feedback controls of chaos

Zhi-Ren Zheng,* Jian Huang, and Jin-Yue Gao
Physics Department, Jilin University, Changchun, Jilin 130023, China

~Received 25 March 1999!

Based on the dynamic equation of a hybrid bistable system with a delayed feedback, we have studied
changes of the bifurcation diagram of its output oscillation under chaos suppression and delayed feedback
control of chaos, respectively, and the physical origin of these changes. The result clearly shows that, in this
case, the input intensity of the system is replaced by a smaller effective input intensity. So the bifurcation
diagram is shifted to its right side, and a certain part of the chaotic oscillation becomes periodic oscillation.
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I. INTRODUCTION

The chaos suppression~CS!, F(t)5X@2V(t)#, proposed
by Davis @1#, and the delayed feedback control of cha
~DFC!, F(t)5X@V(t2T)2V(t)#, proposed by Pyragas@2#,
are two effective and convenient methods of chaos con
The latter one has been successfully applied to many sys
@3–10#. Using these two methods, we have realized the fe
back control of chaos theoretically and experimentally in
electro-optical bistable system with a delayed feedback,
successfully demonstrated the dynamic storage function
the system@11#. In the meantime, we have found that, fo
lowing these feedback controls, the whole bifurcation d
gram is shifted to its right side.

In this paper we will discuss the changes of the bifur
tion diagram under CS and DFC, respectively, and exp
the physical nature of the process from the viewpoint of
furcation diagram analysis and give a theoretical understa
ing for the feedback controls of chaos in a hybrid bista
system with a delayed feedback.

II. THE CHANGES OF THE BIFURCATION DIAGRAM
UNDER THE FEEDBACK CONTROLS OF CHAOS

The dynamic behavior of a hybrid bistable system with
delayed feedback can be described by the following dim
sionless equation@11,12#:

dV~ t !

dt
1V~ t !5I f „V~ t2t!…, ~1!

whereI andV(t) represent the input and output intensitie
respectively.t is the effective delay time in the feedbac
loop. Botht and the effective time variablet are scaled to
the natural response time of the system.

Applying CS or DFC to the above system, then perfor
ing numerical simulation for an electro-optical bistable s
tem with a delay, we get the following dynamic equati
with the chaos suppression or the chaos control:
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dV~ t !

dt
1V~ t !5I f ~ t !1F~ t !, ~2!

whereF(t)5X@2V(t)# ~CS! or X@V(t2T)2V(t)# ~DFC!,
X is the weight of the chaos suppression or the chaos con
T is the effective delay time of chaos control and also sca
to the natural response time of the system;f (t)50.5(1
2K cos@V(t2t)1u)#, while K is the extinction coefficient of
the electro-optical bistable system andu is the initial phase
of the system@11#.

First, let us study the change of the bifurcation diagra
under a CS. Setting the control termF(t) to beX@2V(t)#,
the weightX to be20.2, 0.0, 0.2, respectively, and the dela
time t of the system to be 20.0, we solve Eq.~2! with
Runge-Kutta method and get three corresponding bifurca
diagrams of the output oscillation levelVp with a long delay
of the system, as shown in Fig. 1. Figure 1~a! is the bifurca-
tion diagram in the absence of chaos suppression. Compa
Fig. 1~b!, which corresponds toX520.2, with Fig. 1~a!, we
find that the whole bifurcation diagram is shifted and co
pressed to the left side. In this case, part of the perio
oscillation region in Fig. 1~a! now lies in the chaotic oscil-

FIG. 1. The output oscillation levelVp as a function of input
intensity I. The parameters:K50.8,u5p, t520.0, F(t)5
X@2V(t)#; ~a! X50.0, without any chaos suppression;~b! X5
20.2, with a CS;~c! X50.2, with a CS. The pointsA, B, andC in
1~b! indicate the first, the second, and the third bifurcation poin
respectively. The bifurcation ordersm50, 1, and 2 in 1~b! indicate
the bifurcation regions before the bifurcation pointA, between the
bifurcation pointsA and B, and between the bifurcation pointsB
andC, respectively.
5422 © 1999 The American Physical Society
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lation region in Fig. 1~b!. By comparing Fig. 1~c!, which
corresponds toX50.2, with Fig. 1~a!, we find that the whole
bifurcation diagram is shifted and lengthened to the ri
side. In this case, part of the chaotic oscillation in Fig. 1~a!
becomes the periodic oscillation in Fig. 1~c!. So some cha-
otic states of the system can be suppressed by the CSX
50.2.

Then, let us move to the case of DFC. Setting the con
term F~t! to be X@V(t2T)2V(t)#, the weight X to be
20.2, 0.0, 0.2, respectively, the delay timet of the system
to be 20.0, and the delay timeT of chaos control to be 2t, as
in the case of CS, we draw three corresponding bifurca
diagrams with a long delay of the system, as shown in Fig
The comparison of Fig. 2~b!, which corresponds toX5
20.2, and Fig. 2~a!, which is the bifurcation diagram with
out any chaos control, shows that the steady state regio
orderm50 ~see Fig. 1! and the periodic oscillation region o
orderm51 in Fig. 2~b! happen to coincide exactly with th
corresponding parts in Fig. 2~a!, and the bifurcation diagram
is compressed to the left side. Instead of controlling cha
such a feedback control enlarges the chaotic oscillation
gion of the system. But the comparison of Fig. 2~c!, which
corresponds toX50.2, and Fig. 2~a! shows that the stead
state region ofm50 and the periodic oscillation region o
m51 in Fig. 2~a! happen to coincide exactly with the corr
sponding parts in Fig. 2~c!, and the bifurcation diagram i
lengthened to the right side. Such a feedback contro
chaos enlarges the periodic oscillation region of the syst
so some chaotic states of the system can be controlled b
DFC of X50.2 andT52t.

In another case of DFC, setting the control termF(t) to
be X@V(t2T)2V(t)#, the weightX to be 0.0 and 0.2, re
spectively, the delay timet of the system to be 20.0, th
delay timeT of chaos control to bet instead of 2t, and
following the above process, we draw two correspond
bifurcation diagrams with a long delay of the system,
shown in Fig. 3. By comparing Fig. 3~b!, which corresponds
to X50.2, with Fig. 3~a!, which is the bifurcation diagram in
the absence of chaos control, we find that the whole bifur
tion diagram is shifted and lengthened to the right side.
this case, part of the chaotic oscillation in Fig. 3~a! becomes
the periodic oscillation in Fig. 3~b!, so some chaotic states o
the system can also be controlled by the DFC ofX50.2 and
T5t.

FIG. 2. The output oscillation levelVp as a function of
input intensity I. The parameters:K50.8, u5p, t520.0, F(t)
5X@V(t22t)2V(t)#; ~a! X50.0, without any chaos control;~b!
X520.2, with a DFC;~c! X50.2, with a DFC.
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III. THE PHYSICAL ORIGIN OF THE CHANGES
OF THE BIFURCATION DIAGRAM

In order to find out the physical origin leading t
the change of the bifurcation diagram, we substituteF(t)
5X@2V(t)# and F(t)5X@V(t2T)2V(t)# into Eq. ~2!,
then obtain the following differential equations for CS a
DFC, respectively:

1

11X

dV~ t !

dt
1V~ t !5I * f ~ t !, ~3!

1

11X

dV~ t !

dt
1V~ t !5

X

11X
V~ t2T!1I * f ~ t !, ~4!

where I * 5I /(11X) is a new parameter and defined as
effective input intensity of the system.

Equations~3! and~4! clearly show that the input intensit
I in the dominant termI f (t) of Eq. ~2! is replaced by an
effective input intensityI * because of the feedback contro
of chaos, so the whole bifurcation diagram of the system
be changed.

When the delay timet of the system is long, the linea
stability analysis shows that the odd harmonics of the ei
fundamental frequency of the system coincide with the c
responding higher eigenfrequencies of the system and
very strong while the even harmonics of the eigen fundam
tal frequency are far from the corresponding higher eig
frequencies and are very weak@13#. So the output oscillation
is of square wave form and there isdV(t)/dt'0 @11#, and
Eq. ~3! can be approximated to the following iterative Equ
tion:

V~ t !5
I

11X
f ~ t !5I * f ~ t !. ~5!

It is obvious that, with a negative CS ofX50.2, the ef-
fective input intensity is (11X) times less than the actua
input intensity. Therefore each point on the bifurcation d
gram in Fig. 1~a! is shifted from I to (11X)I , and the bifur-
cation diagram is lengthened to the right side (11X) times
as long as that of before chaos suppression. When a pos
CS ofX520.2 is applied to the system, the result is right
the contrary, as shown in Fig. 1~b!.

When the delay timet of the system is long, numerica
simulation shows that the result calculated according to

FIG. 3. The output oscillation levelVp as a function of
input intensity I. The parameters:K50.8,u5p, t520.0, F(t)
5X@V(t2t)2V(t)#; ~a! X50.0, without any chaos control;~b!
X50.2, with a DFC.
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differential equation~3! is the same as that calculated fro
the iterative equation~5!. When the delay timet of the sys-
tem is short, the result calculated according to Eq.~3! quali-
tatively agrees with that calculated from Eq.~5!, as we can
see more clearly below.

With a negative CS and a short delayt of the system, the
shift behavior of the first bifurcation point A~see Fig. 1!,
which is calculated from Eq.~3!, is shown in Fig. 4~the open
circles!. With a negative CS and a long delayt of the sys-
tem, the regular patternI A5I 0(11X) of the shift of the
same bifurcation point A, which is calculated from Eq.~5!, is
also shown in Fig. 4~the solid lines!. Figure 4 shows that the
larger the weightX of chaos suppression, the greater the s
of the first bufurcation point A. For the same weightX, Fig.
4 shows three features. First, the shift of the open circle
for a short delay is smaller than the corresponding shift
the solid line for a long delay. Second, the difference
tween the open circle line and the solid line for a shor
delay is larger than the difference for a longer delay. Th
with the increase of the delay timet, the difference quickly
diminishes, and becomes very small when the delay timt
increases to 10.0~curve 4!.

Numerical simulation shows that, with a negative CS a
a short delayt, the shift behavior of other points on th
bifurcation diagram is the same as that of the first bifurcat
point A.

Now, let us discuss the case of DFC. When the delay t
t of the system is long, there is dV(t)/dt'0. So Eq.~4! can
be approximated to the following iterative equation:

V~ t !5
X

11X
V~ t2T!1

I

11X
f ~ t !5

X

11X
V~ t2T!1I * f ~ t !.

~6!

The output oscillation for a long delay of the system is
typical square wave. So the period of the output oscillatio
2t in the bifurcation region ofm51, and 4t in the bifurca-
tion region ofm52 @14#.

FIG. 4. The input intensityI A corresponding to the first bifurca
tion point A as a function of the weightX of CS. The parameters
K50.8,u5p, F(t)5X@2V(t)#. The curves composed of ope
circles are calculated from Eq.~3! when the delay time of the sys
tem is t i ( i 5124), respectively. The solid lines represent t
curves ofI Ai5I 0i(11X)( i 5124) corresponding to the case of
long delay, whereI 0i ( i 5124) are the input intensities corre
sponding to the first bifurcation point A, which are calculated fro
Eq. ~3! when the weightX equals zero and the delay time o
the system ist i ( i 5124), respectively.~1! t153.0,I 0153.20;
~2! t254.0,I 0252.96; ~3! t356.0,I 0352.74; ~4! t4510.0, I 04
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When the delay timeT of chaos control is equal to th
period 2t of the output oscillation in the bifurcation regio
of m51, which is a typical choice for chaos control, and t
weight X of chaos control is equal to 0.2, for the bifurcatio
region before the second bifurcation point in Fig. 2~a!, before
and after the DFC, there is alwaysV(t-2t)5V(t), namely
F(t)5X@V(t22t)2V(t)#50. Therefore Eq.~6! becomes
V(t)5I f (t) within these regions, and the bifurcation regio
of m50 and 1 before the chaos control are not changed a
the chaos control, as shown in the comparison of Figs. 2~a!
and 2~c!. But for the region after the second bifurcation poi
in Fig. 2~a!, before the chaos control,V(t22t) is no longer
equal toV(t). Here the change of the bifurcation diagra
is governed by the joint effect of the control term
X@V(t22t)# and X@2V(t)#. When only X@V(t22t)# is
applied to the system, the bifurcation diagram is shifted a
stretched to the left side, as shown in the comparison of F
1~a! and 5~a!. But when onlyX@2V(t)# is applied to the
system, the bifurcation diagram is shifted and lengthened
the right side, as shown in the comparison of Figs. 1~a! and
5~b!, namely as shown in the comparison of Figs. 1~a! and
1~c!. WhenX@V(t22t)2V(t)# is applied to the system, it is
key that, under the feedback control ofX@2V(t)#, the actual
input intensity I in the dominant termI f (t) of Eq. ~2! is
replaced by a smaller effective input intensityI * 5
I /(11X). In other words, here the effect of the control ter
X@2V(t)# is stronger than the effect of the control ter
X@V(t22t)#. So the region after the second bifurcatio
point in Fig. 2~a! is lengthened to the right side under th
DFC of X@V(t22t)2V(t)#, as shown in the comparison o
Figs. 1~a! and 5~c!, namely as shown in the comparison
Figs. 2~a! and 2~c!. When the DFC ofX520.2 is applied to
the system and T is equal to 2t, the result may be deduce
by analogy, as shown in the comparison of Figs. 2~a! and
2~b!.

Numerical simulation shows that, when the weightX of
chaos control is equal to 0.2, and the delay timeT of chaos
control is set to be 4t, for the bifurcation region before the
third bifurcation point in Fig. 2~a!, before and after the DFC
there is alwaysV(t24t)5V(t). Therefore Eq.~6! becomes
V(t)5I f (t) within these regions, the bifurcation regions
m50, 1, and 2 before the chaos control are not changed a
the chaos control, and the region after the third bifurcat

FIG. 5. The output oscillation levelVp as a function of input
intensity I. The parameters:K50.8, u5p, t520.0; ~a! F(t)
5X@V(t22t)#, X50.2, with a DFC; ~b! F(t)5X@2V(t)#, X
50.2, with a CS;~c! F(t)5X@V(t22t)2V(t)#, X50.2, with a
DFC.
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point in Fig. 2~a! is lengthened to the right side because
the joint effect discussed above.

If the delay timet of the system is short, the eigen fun
damental period of the output oscillation will not be equal
a multiple oft, for example 2t or 4t. But if only the delay
time T of the chaos control is set to be the eigen fundame
period of the output oscillation of the system, we will al
get the result similar to Fig. 2.

When the delay timet of the system is long, the dela
time T of chaos control is equal tot, and the weightX of
chaos control is equal to 0.2, for the steady state region
m50 in Fig. 3~a!, before and after the DFC, there is alwa
V(t2t)5V(t). Therefore Eq. ~6! becomesV(t)5I f (t)
within this region, and the steady state region ofm50 before
the chaos control coincides with the corresponding region
m50 after the chaos control. For the bifurcation region
m51 in Fig. 3~a!, before the chaos control,V(t2t) is no
longer equal toV(t). SettingC05V(t2t)1V(t), where the
parameterC0 is a constant for a fixed input intensityI and
monotonically becomes larger along with the increase
the input intensity in the bifurcation region of m51 in Fig.
3~a!, then substitutingV(t2T)5V(t2t)5C02V(t) into
Eq. ~6!, we get V(t)5@C0X/(112X)#1@ I /(112X)# f (t)
5@C0X/(112X)#1I * f (t). In this case, the effective inpu
intensity of the system is (112X) times less than the actua
input intensity. The comparison between Figs. 3~b! and 3~a!
shows that the first bifurcation point in Fig. 3~a! is shifted
So

h

f

al

of

f
f

f

from I almost to (112X)I , and the bifurcation diagram is
also lengthened to the right side correspondingly, but
lengthened multiple is less than (112X) because of the ef-
fect of the termC0X/(112X).

In conclusion, when a CS or a DFC is applied to a hyb
bistable system with a long delay, the input intensity can
replaced by a new effective input intensity. When the effe
tive input intensity is smaller than the actual input intensi
the bifurcation diagram of the system is shifted to its rig
side, and part of the chaotic states of the system can bec
periodic states. As the delay time of the system becom
short, numerical simulation shows that the regularity of t
change of the bifurcation diagram under the feedback c
trols of chaos gradually deviates from that with a long de
of the system, and the shorter the delay time, the larger
difference. Numerical simulation also shows that, with
short delay of the system, the result under DFC is m
complicated than that under CS in general. This is beca
DFC is a joint effect of two control termsX@V(t2T)# and
X@2V(t)#, while CS is an effect of one control term
X@2V(t)# only. What one should notice is that the results
this paper are just from a hybrid bistable system with a
layed feedback, and it needs to be investigated furt
whether these results may be applied to other systems, e
cially the systems with a markedly different nature from t
present one.
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